Hierarchy of the Selberg zeta functions
نویسندگان
چکیده
We introduce a Selberg type zeta function of two variables which interpolates several higher Selberg zeta functions. The analytic continuation, the functional equation and the determinant expression of this function via the Laplacian on a Riemann surface are obtained.
منابع مشابه
An Analogue of the Chowla–selberg Formula for Several Automorphic L-functions
In this paper, we will give a certain formula for the Riemann zeta function that expresses the Riemann zeta function by an infinte series consisting of KBessel functions. Such an infinite series expression can be regarded as an analogue of the Chowla-Selberg formula. Roughly speaking, the Chowla-Selberg formula is the formula that expresses the Epstein zeta-function by an infinite series consis...
متن کاملGeometric Zeta Functions, L-Theory, and Compact Shimura Manifolds
INTRODUCTION 4 Introduction Zeta functions encoding geometric information such as zeta functions of algebraic varieties over finite fields or zeta functions of finite graphs will loosely be called geometric zeta functions in the sequel. Sometimes the geometric situation gives one tools at hand to prove analytical continuation, functional equation and an adapted form of the Riemann hypothesis. T...
متن کاملSelberg zeta functions for spaces of higher rank
5 Introduction In 1956 A. Selberg introduced the zeta function Z(s) = c N ≥0 (1 − e −(s+N)l(c)), Re(s) >> 0, where the first product is taken over all primitive closed geodesics in a compact Riemannian surface of genus ≥ 2, equipped with the hyperbolic metric, and l(c) denotes the length of the geodesic c. Selberg proved that the product converges if the real part of s is large enough and that ...
متن کاملA New Determinant for Quantum Chaos
Dynamical zeta functions [1], Fredholm determinants [2] and quantum Selberg zeta functions [3, 4] have recently been established as powerful tools for evaluation of classical and quantum averages in low dimensional chaotic dynamical systems [5] [8]. The convergence of cycle expansions [9] of zeta functions and Fredholm determinants depends on their analytic properties; particularly strong resul...
متن کاملArithmetic expressions of Selberg’s zeta functions for congruence subgroups
Abstract In [Sa], it was proved that the Selberg zeta function for SL2(Z) is expressed in terms of the fundamental units and the class numbers of the primitive indefinite binary quadratic forms. The aim of this paper is to obtain similar arithmetic expressions of the logarithmic derivatives of the Selberg zeta functions for congruence subgroups of SL2(Z). As applications, we study the Brun-Titc...
متن کامل